- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Srivastava, Biplav (2)
-
Fabiano, Francesco (1)
-
Horesh, Lior (1)
-
Huhns, Michael (1)
-
Loreggia, Andrea (1)
-
Muppasani, Bharath (1)
-
Muppasani, Bharath Chandra (1)
-
Murugesan, Keerthiram (1)
-
Nag, Protik (1)
-
Narayanan, Vignesh (1)
-
Pallagani, Vishal (1)
-
Rossi, Francesca (1)
-
Roy, Kaushik (1)
-
Sheth, Amit (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 15, 2025
-
Pallagani, Vishal; Muppasani, Bharath Chandra; Roy, Kaushik; Fabiano, Francesco; Loreggia, Andrea; Murugesan, Keerthiram; Srivastava, Biplav; Rossi, Francesca; Horesh, Lior; Sheth, Amit (, Proceedings of the International Conference on Automated Planning and Scheduling)Automated Planning and Scheduling is among the growing areas in Artificial Intelligence (AI) where mention of LLMs has gained popularity. Based on a comprehensive review of 126 papers, this paper investigates eight categories based on the unique applications of LLMs in addressing various aspects of planning problems: language translation, plan generation, model construction, multi-agent planning, interactive planning, heuristics optimization, tool integration, and brain-inspired planning. For each category, we articulate the issues considered and existing gaps. A critical insight resulting from our review is that the true potential of LLMs unfolds when they are integrated with traditional symbolic planners, pointing towards a promising neuro-symbolic approach. This approach effectively combines the generative aspects of LLMs with the precision of classical planning methods. By synthesizing insights from existing literature, we underline the potential of this integration to address complex planning challenges. Our goal is to encourage the ICAPS community to recognize the complementary strengths of LLMs and symbolic planners, advocating for a direction in automated planning that leverages these synergistic capabilities to develop more advanced and intelligent planning systems. We aim to keep the categorization of papers updated on https://ai4society.github.io/LLM-Planning-Viz/, a collaborative resource that allows researchers to contribute and add new literature to the categorization.more » « less
An official website of the United States government
